Psion Organizer II LZ

Manufactured in 1986, the Organiser II was really the first successful PDA. Psion started with the Organiser in 1984, billed as the ‘First Practical Pocket Computer’. This unit came out 2 years later and had a larger display, more RAM and a faster CPU.

One of the big innovations were ‘Datapaks’ – modules that could be plugged into the unit with either pre-loaded software or additional storage.

Specifications:

  • Dimensions: 5.6″ x 3.0″ x 1.1″
  • Weight: 8.8 oz. (without battery)
  • Display: 4 lines x 16 characters, Dot matrix LCD.
  • Keyboard: 36 keys, audible click, auto-repeat.
  • Memory: (CM) 32k ROM, 8k RAM. (XP) 32k ROM, 32k RAM.
  • Moss Storage: 2 slots for program & Datapaks.
  • Interfacing: 16-pin slot for optional peripherals.
  • Power: Standard 9 volt lang-life alkaline battery

For more information, check out oldcomputers.net page on the Psion Organiser.

primark

Cambridge Computer Z88 Laptop Computer

The Z88 Laptop Computer was designed and developed by Clive Sinclair’s Cambridge Computer, Limited. It is a Z80 based, A4 sized computer running a 3.2MHz Z80 processor with 32k of RAM and a 64×640 LCD display. The membrane keyboard has a light touch and is quite a delight to type on.

These machines were more popular in the UK than in the US – over there the Sinclair line (ZX80, ZX81, etc) were phenomenally popular. I’d actually never seen a Z88 before, and had to do some research when I found it at the local MIT Flea market, but once I read up on it, I had to add it to the collection. This one was manufactured in 1988.

This particular one has 3 cartridges installed in the slots: some extra RAM, and 2 32k EPROM carts, one of which is labelled “PC Link” (a communications package. Looking forward to trying that out!)

Radio Shack TRS-80 PC-1 Pocket Computer

I’m super excited about adding this piece of history to the Vintage Handheld Computing Collection. When i was in high school, I had a total geek crush on these units when they were came out. Handheld, ran basic, battery powered, very nifty looking.

I acquired one back in the day (and have an interesting story about using it in a Physics exam), but haven’t had a chance to play with one since.

This one was donated by one of my coworkers. It includes the cassette interface, the original docs and boxes, and the plastic overlays that were used for ‘functions’ – basically defined keys. It’s in good physical shape, but has a bad display. I haven’t had a chance to run up the batteries and dock for it, but physically, it’s in great shape. Even came with some financial add-on software.

This particular unit is a PC-1 – the first generation of the pocket computer. They were actually made by Sharp as the PC-1211, and rebranded as the TRS-80 Pocket Computer. The PC-1 moniker was added later as the line expanded into more models.

Creating Timelapse Videos from a Synology NAS

About a year and a half ago, I bought a Synology 216+ NAS .  The primary purpose was to do photography archiving locally (before syncing them up to Amazon S3 Glacier for long term storage).  The box has been a rock solid tool, and I’ve been slowly finding other uses for it.  It’s basically a fully functional Linux box with an outstanding GUI front end on it.

One of the tools included with the NAS is called ‘Surveillance Station’, and even though it has a fairly sinister name, it’s a good tool that allows control and viewing of IP connected cameras, including recording video for later review, motion detection, and other tidbits.  The system by default allows 2 cameras free, but you can add ‘packs’ that allow more cameras (these packs are not inexpensive – to go up to 4 cameras cost $200, but given this is a pretty decent commercial video system, and the rest of the software came free with the NAS, I opted to go ahead and buy into it to get my 4 cameras online).

It just so happens, in September, 2017, we had a contractor come on site and install solar panels on several houses within our community. What I really wanted to do is use the Synology and it’s attached cameras to not only record the installation, but do a timelapse of the panel installs. Sounds cool, right?

Here’s how I did it.

The Cameras

The first thing needed obviously were cameras. They needed to be wireless, and relatively easy to configure. A year or two ago, I picked up a D-Link DCS-920L IP camera. While the camera is okay (small, compact, pretty bulletproof), I was less than thrilled with the D-Link website and other tools. They were clunky and poorly written. A little googling around told me “hey, these cameras are running an embedded OS that you can configure apart from the D-Link tools”. Sure enough, they were right. The cameras have an ethernet port on them, so plugging that into my router and powering up let me see a new Mac address on my network. http://192.168.11.xxx/ and I got an HTTP authentication page. Logging in with the ‘admin’ user, and the default password of… nothing (!), I had a wonderful screen showing me all the configuration options for the camera. I’m in!

First thing, natch, I changed the admin password (and stored it in 1Password), then I set them up to connect to my wireless network. A quick rebooot later, and I had a wireless device I could plug into any power outlet, and I’d have a remote camera. Win!

Next, these cameras needed to be added to the Synology Surveillance Station. There’s a nice simple wizard in Surveillance Station that makes the adding of IP camera pretty straighforward. There’s a pulldown that lets you select what camera type you’re using, and then other fields appear as needed. I added all of my cameras, and they came up in the grid display no problem. This is a very well designed interface that made selecting, configuring, testing, and adding the camera(s) pretty much a zero-hassle process.

If you’re planning on doing time lapses over any particular length of time, it’s a good idea to go into ‘Edit Camera’ and set the retention timeperiod to some long amount of time (I have mine set to 30 days). This’ll give you enough room to record the video necessary for the timelapse, but you won’t fill your drive with video recordings. They’ll expire out automatically.

At this point you just need to let the cameras record whatever you’ll be animating later. The Synology will make 30 minute long video files, storing them in /volume1/surveillance/(cameraname).

For the next steps, you’ll need to make sure you have ssh access to your NAS. This is configured via Control Panel -> Terminal / SNMP -> Enable ssh. DO NOT use telnet. Once that’s enabled, you should be able to ssh into the NAS from any other device on the local network, using the port number you specify (I’m using 1022).

ssh -p 1022 shevett@192.168.11.100

(If you’re using Windows, I recommend ‘putty’ – a freely downloadable ssh client application.)

Using ‘ssh’ requires some basic comfort with command line tools under linux.  I’ll try and give a basic rundown of the process here, but there are many tutorials out on the net that can help with basic shell operations.

Putting It All Together

Lets assume you’ve had camera DCS-930LB running for a week now, and you’d like to make a timelapse of the videos produced there.

  1. ssh into the NAS as above
  2. Locate the directory of the recordings.  For a camera named ‘DCS-930LB’, the directory will be /volume1/surveillance/DCS-930LB
  3. Within this directory, you’ll see subdirectories with the AM and PM recordings, formatted with a datestamp.  For the morning recordings for August 28th, 2017 ,the full directory path will be /volume1/surveillance/DCS-930LB/20170828AM/.  The files within that directory will be datestamped with the date, the camera name, and what time they were opened for saving:
  4. Next we’ll need to create a file that has all the filenames for this camera that we want to time.   A simple command to do this would be:
    find /volume1/surveillance/DCS-930LB/ -type f -name '*201708*' > /tmp/files.txt

    This gives us a file in the tmp directory called ‘files.txt’ which is a list of all the mp4 files from the camera that we want to timelapse together.

  5. It’s a good idea to look at this file and make sure you have the list you want. Type
    pico /tmp/files.txt

    to open the file in an editor and check out out.  This is a great way to review the range of times and dates that will be used to generate the timelapse.  Feel free to modify the filename list to list the range of dates and times you want to use for the source of your video.

  6. Create a working directory.  This will hold your ‘interim’ video files, as well as the scripts and files we’ll be using
    cd 
    mkdir timelapse
    cd timelapse
  7. Create a script file, say, ‘process.sh’ using pico, and put the following lines into it.  This script will do the timelapse proceessing itself, taking the input files from the list creatived above, and shortening them down to individual ‘timelapsed’ mp4 files. The ‘setpts’ value defines how many frames will be dropped when the video is compressed. A factor of .25 will take every 4th frame. A factor of .001 will take every thousandth frame, compressing 8 hours of video down to about 8 seconds.
    #!/bin/bash
    
    counter=0;
    for i in `cat /tmp/files.txt`
    do
        ffmpeg -i $i -r 16 -filter:v "setpts=0.001*PTS" ${counter}.mp4
        counter=$((counter + 1))
    done
  8. Okay, now it’s time to compress the video down into timelapsed short clips.  Run the above script via the command ‘. ./process.sh’.  This will take a while.  Each half hour video file is xxx meg, and we need to process that down.  Expect about a minute per file, if you have a days worth of files, that’s 24 minutes of processing.
  9. When done, you’ll have a directory full of numbered files:
    $ ls
    1.mp4
    2.mp4
    3.mp4
  10. These files are the shortened half hour videos.  The next thing we need to do is ‘stitch’ these together into a single video.  ffmpeg can do this, but it needs a file describing what to load in.  To create that file, run the following command:

    ls *.mp4|sort -n| sed -e "s/^\(.*\)$/file '\1'/" > final.txt
  11. Now it’s time to assemble the final mp4 file.  The ‘final.txt’ file contains a list of all the components, all we have to do is connect them up into one big mp4.
    ffmpeg -f concat -safe 0 -i final.txt -c copy output.mp4
  12. The resulting ‘output.mp4’ is your finalized video.   If you’re working in a directory you can see from the Synology desktop, you can now play the video right from the web interface.  Just right click on it, and select ‘play’.

Here’s two of the three timelapses I did, using a remote camera in my neighbors house.  Considering the low quality of the camera, it came out okay…

This entire tutorial is the result of a lot of experimentation and tinkering.  There are holes, though.  For instance, I’d like to be able to set text labels on the videos showing the datestamp, but the ffmpeg that’s compiled on the NAS doesn’t have the text extension built into it.

Let me know if you have any suggestions / improvements / success stories!

Toshiba Libretto 110CT

When I was working at in the IT Department at Wildfire Communications, the number one toy the execs and managers wanted was  the Toshiba Libretto ‘palmtop’ computer. They ran Windows 95, were compact and functional (for the time), and made great conversation / showoff pieces. I had to have one for my collection.

I’ve let people know I was collecting vintage handheld computers, suddenly everyone wanted to donate! I quickly put together the collection home page and made the wishlist known. Lo, a friend I know from Arisia said “I have a Libretto that’s just lying around. Want it?” – Heck yeah!

This weekend, it arrived via a somewhat circuitous route, and lo, it is a 110CT – a slightly later model than the ones I worked on (which were 50CT and 70CT’s), but still the same form factor and awesome design. One of the niftiest is the integrated touch-mouse on the right side of the screen.  The mouse buttons are actually on the lid, so you move the mouse with your thumb, and grip the buttons on the reverse side.

This one appears to have a screen problem that won’t let it show video properly, but I’m excited to have it in the collection. Thanks Ben!

For the curious, here’s the specs on the 110CT:

  • Manufacture date: 1998
  • Pentium 233MMX CPU
  • 32meg RAM (!!)
  • 4.3GB HD
  • 7.1″ 800×480 display
  • Came with Windows 98 or Windows NT

UPDATE 10/3 – Blank screen on startup / video problem solved

I finally googled around long enough to find the problem.  The Libretto shows an absolutely blank screen until any boot device is ready.  I noted that if I held down F12 on startup, I’d get the BIOS update screen, so the screen worked, the problem was elsewhere.  While on the BIOS screen, I heard a very light noise – and realized it was the HD trying to spin up, but failing.  This is not an uncommon problem in older computers.  The drives get ‘stuck’ and can’t spin up after sitting for a while.  Sometimes referred to ‘stiction’.

There’s only one cure for stiction.  A vigorous shake of the computer, or… yes, I really did this, rap the laptop on the table a few times.  For a book-sized computer, this was easy.  A few taps, and I heard the hard drive happily spin up, and lo! A windows 98 screen appeared!  We’re in business!