Doing finish work on a windowsill.

I don’t do much home finishing work, but I’m sort of proud that I got this thing done myself.

After finishing the attic, the windowsill on the one window was unfinished. I decided to do the work myself. It was an ugly and glaring flaw in the otherwise well finished space, it was time to fix it.
The first step was picking up some wood of the appropriate thickness from Lowes, and cutting it to shape in the sill.

I wanted a bit of a lip over the front of it, so I ‘notched’ the side of the front board (it required two pieces because of the depth of the sill) and fit it into place. I was working with relatively rudimentary woodcutting tools (skilsaw and jigsaw), so the fit wasn’t perfect. If I had a chopsaw and/or a scrollsaw, this would be much easier, but there’s only so many tools I can fit in my house. I used my belt sander to smooth / round off the edges of the lip and the nailed the pieces in place with finishing nails, using a small punch to countersink the nails so they wouldn’t stick up.

Because the fit wasn’t perfect, and I hadn’t cut into the drywall to fit the pieces in snugly, I used some silicone to fill in the gaps and seal the wood against the wall. After that, it was just a matter of using some leftover paint I had from when the room was painted, and voila! I had a lovely new windowsill.

Is it perfect? Not even remotely, but it’s a damned sight better than the raw unfinished sill. Onward!

primark

Installing the Back Seat on my 2000 Jeep Wrangler TJ

Winter means getting back into working on the Jeep (wait, does it? Oh heck, dunno. Vacation is a good time to do stuff). When I bought my Jeep TJ last year, it came with a rear seat, but the brackets needed to use the seat had been removed, so it’s just sat in the garage. A lot of Jeep purists remove it because it’s just extraneous, and takes up valuable storage space, but I’ve missed being able to take more than one passenger out for rides (either around town or on the trail), so I finally got around to getting this task done.

I bought new brackets and screws a few months ago, so I should have all the things neeed. What had been holding me up was the previous owner had painted the ‘tub’ of the jeep with Monstaliner, a very thick protective paint that protects the body of the jeep from rust. This paint was over everything, including the screws and bolt holes where I needed to mount the brackets. That paint would have to be scraped away before I could install anything.

I had help from a friend with some extra tools, and we were able to use a blow torch to heat up the monstaliner that was covering the side bracket screws, and, using a small pick, get the material out of the torx (torque?) heads enough to get a good solid mating of the socket. Those screws came out fine, but there was also material in the holes in the floor of the tub where the paint had dripped in.

We tried using the torch and screws on the floor holes to see if we could get the material out of the way, but it didn’t work (the screws would just jam up). In the end we used a tapping set to re-groove the holes and we were able to seat the screws into the floor of the tub

After that it was just a matter of putting the brackets in and dropping the seat in place. It fit like it was supposed to, but I realized I was missing a part. There’s a C-clip or something similar that goes on the front bar that keeps the seat from sliding sideways when folded up. That clip was missing, so I’ll need to go find that before I can declare this useable.

The next step will be to get a seat belt set (hellooooo ebay) and install those. When that’s all done, I’ll finally be able to take the family out for drives and wheeling if they want to come along! It’ll be nice being more than a 2 seater.

I Made Electronic Clocks with my Son

It’s always a challenge to find things to do with a teenager just going through his first year at college. What could ye ole dad provide that more interesting than his new experiences with friends, classes and living away from home? So it was with some trepedation I reached out to Zach and asked if he’d be interested in taking a soldering class with me at MakeIt Labs, the makerspace I’ve been frequenting the last two years or so.

The class was presented as a 3 hour introduction to soldering techniques and best practices. The lab would provide all the tools needed (soldering iron, tools, solder, and other bits), as well as the parts to build a nice little LED clock. This isn’t a ‘here’s your parts, you figure it out’ event, it was a guided walkthrough of basic technique, pitfalls to watch out for, and detailed instructions on assembly. Sounded like a great way to learn how to solder, as well as something we could do together.

“Sure Dad, sounds great. Lets go!”

So I signed for the class, and on Saturday Zach and I headed up to the lab and settled in at our stations.

Each of us had our own kit, consisting of about 30 parts, a printed circuit board, red retro LED displays, and a powersupply. The workstations were well supplied with a very good soldering iron, solder, wire snips, flux, needlenose pliers, board holder, and other small tools. Zach and I, along with 6 or so other students, got started. I had some experience soldering, having done lots of drone builds that require a fair amount of soldering work, but nothing this detailed, and certainly not mounting components on a PCB. Zach had none at all.

Our instructor had prepared well, with a full presentation on what we were going to do, what tools we’d be working with, and basics of how to use the materials and follow the instructions. After a 15-20m introduction on the hazards we should be careful for (“Soldering irons are hot, mmkay? They make other things hot too. Be careful!”) we got started. The first couple components were dirt simple. Just jumper wires across the board. After that we moved on to more and more detailed things, culminating in mounting the socket for the CPU and installing the chip. Through it all, Bill, our instructor, was patient, detailed, and obviously an expert on the subject. He answered all questions professionally and patiently, and, along with lab assistant John, helped the students when problems came up, or simple inspected work to make sure it was going okay.

Finally, after 2 hours of assembly, we were ready to test the boards out. Bill used one of the lab bench power supplies, and one by one, each student brought their board up, and it got powered up. Zach’s worked on the first try, showing bright glowing red LED digits ticking away time perfectly. Mine, of course, didn’t, and we quickly discovered 3-4 bad solder points. I went back to my bench and fixed these, and my clock came to life as well.

The kits were from a standard hobbyist supplier, and were meant for student workshops like this. they didn’t come with mounting hardware, so before the class started, Bill and John thoughtfully used the labs laser cutter to make some acrylic display mounts. A couple screws, standoff posts, and acrylic plates later, and lo, we had a lovely, hand built, LED clock!

The class was a great experience for both Zach and I, and we both had something useful we took away together. Each of us has an identical clock that we made at the same time, together, on a cold day in December.

Thanks MakeIt for providing a great learning environment, thanks Bill for putting together a great class, and thanks Zach for spending a cool day geeking out with his old man.

Atari Portfolio

This one has been on my bucket list from the beginning, and I’m happy to say, I was able to make my way through an eBay auction and pick up a mint condition unit that looks great and works even better.

In 1989, DIP Research in Surrey England developed the DIP Pocket PC. They licensed it to Atari in the US and UK, and Atari rebranded it as the Portfolio.

The Portfolio is widely recognized as the first MS-DOS Compatible palmtop computer. It runs a slightly modified version of MS-DOS 2.11.

This unit is in pristine condition, complete with expansion cards with several applications, we well as a card reader that can be plugged into a desktop PC for transferring files.

Specifications:

  • Manufactured: June 1989
  • Operating system: DIP DOS 2.11
  • CPU: 80C88 @ 4.9152 MHz
  • Memory: 128 KB of RAM and 256 KB of ROM
  • Display: monochrome LCD (no backlight) 40 characters × 8 lines
  • Graphics: 240 × 64
  • Power: 3× AA size removable alkaline batteries (Optional AC adapter)

TI-74 Basicalc

I had never heard of these machines until one came up on /r/retrobattlestations and I just had to have it.

The Basicalc is one of the early programmable calculators that was starting the trend in handheld computing from ‘calculator’ to ‘computer’. The TRS-80 PC-1 is another great example.

The TI-74 has a working BASIC interpreter, as well as the standard calculator functions. It also includes a ROM Module slot that allows for plugin expansion of pre-packaged applications.

Specifications:

  • TMS70C46 CPU
  • 31 5×7 character LCD
  • 32+4 KB ROM
  • 8 KB RAM
  • RAM/ROM memory expansion port
  • Hexbus port
  • 80 characters per line (31 visible)
  • powered by 4 AAA-size batteries

Happy to have this in the collection!